

The Luxtera EPIC Program

"Electronic and Photonic Integrated Circuits"

March 5, 2007

Cary Gunn CTO, Co-founder

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect ig this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	tion of information. Send comments tarters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of to s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 05 MAR 2007		2. REPORT TYPE N/A		3. DATES COVE	ERED	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
Electronic and Pho	rcuits	5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PROJECT NUMBER	
					5e. TASK NUMBER	
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Luxtera, Inc.				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited				
	otes ems Technology Syn original document	-	•	on March 5	-7, 2007.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 33	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Luxtera CMOS Photonics Technology

Silicon 10G Modulators driven with on-chip circuitry highest quality signal low loss, low power consumption

Flip-chip bonded lasers wavelength 1550nm passive alignment non-modulated = low cost/reliable Silicon Optical Filters - DWDM electrically tunable integrated w/ control circuitry enables >100Gb in single mode fiber

Complete 10G Receive Path Ge photodetectors trans-impedance amplifiers output driver circuitry

Fiber cable plugs here

Ceramic Package

The Toolkit is Complete

- √10Gb modulators and receivers
- ✓ Integration with CMOS electronics
- √ Cost effective, reliable light source
- √ Standard packaging technology

Trailblazer in Silicon Photonics

Mission:

 Deliver photonic solutions manufactured in a mainstream CMOS fabrication, test and assembly processes to provide customers with high performance optical solutions at price points traditionally associated with copper

Funded: November 2001

Location: Carlsbad, CA

Staff: 57

► Top Tier Investors:

August Capital

New Enterprise associates

Sevin Rosen Funds

Three Corporate Investors

Intellectual Property:

- >100 Patents Filed For
- 40 Issued

Unbroken String of Industry's Firsts

The first CMOS waveguide and 2001 -Fiber-to-the-Chip Coupler

The first CMOS photonics in standard 2002 -130 nm SOI-CMOS process

2003 -The first CMOS 10G Modulator

First Laser bonded to a CMOS die 2004 -

First wafer scale optical probing 2005 -

2005 -First single chip dual XFP transceiver

First monolithic CMOS 4x10G WDM 2006 -

Major announcements coming... 2007 -

CMOS Photonics Foundry

- Luxtera uses FSL's 0.13µm SOI process
 - Same process used to construct their PowerPC[™] embedded microprocessors
 - Very high yield, high volume, mature process
- Design environment is Cadence at the system/subsystem level
 - Device design done on 200 node cluster running 3D FDTD
 - Can perform LVS, DRC on optical circuits
- Philosophy: Started with existing electronics design manual, and make the optics fit – requires extensive characterization, simulation, compromise
 - ~80 films in a CMOS process, need to understand optical properties of ALL of them

Example CMOS Photonics Chips:

Aurora

Two independent
10Gb transceivers
on a single die
(contains
complete PHY
circuitry)

Pulsar

A single 40Gb WDM transceiver 4λ x 10Gb (PMD circuits only)

Component Level Technology

The fiber coupling problem

Holographic Lens Evolution

Luxtera's key to Fiber-to-the-chip: connecting the micro and nano scales

Vertical optical coupling enables...

Routing - Waveguide Loss

Waveguide Loss no longer a major issue

Electrically Tunable Arrayed Waveguide Grating (AWG)

calibration light in

light out (more taps to the right)

Electrically tunable AWG results

BEFORE TUNING

AFTER TUNING

Modulator with integrated driver

CMOS Optical Modulator with Differential Driver ISSCC 2006, A Huang, et al.

CMOS Optical Modulator Performance

Second Generation Technology

Ring modulators = high density/bandwidth

- 30 um radius ring
- Many Tb per mm²
- 2000x smaller than electronic PHY

Transmission A-> B

Wavelength (nm)

Ring Modulators Work at 10G

Small Tunable Optical Filter for WDM

Tunable filters allow:

Dynamic reconfiguration

Operation over wide temperature range

Ge detectors at 10Gbps

By diagram at 10Gb/s, 1550nm, 3V reverse bias, no TIA

Low speed device

Typical performance @ 50C, 1550nm, 3V reverse bias

Responsivity	0.4A/W		
Dark current	3nA		
Bandwidth	5 GHz		

High speed device

 $\overline{X}\overline{X}$

Typical performance @ 50C, 1550nm, 3V reverse bias

🤃 Eile Control Setup Measure Calibrate Utilities Help

Responsivity	0.5A/W
Dark current	30uA
Capacitance	30fF
Bandwidth	14 GHz

Aurora - the First Product

2 XFP Modules in a single Chip

Aurora

1/4 size of XFP

Over 50% lower cost

Up to 2,000m reach

XFP compliant management

EPIC Program Progress – Multiwavelength Transceivers

100Gb Transceiver - Prototypes Oct 2008

TX Fiber – 100Gb

RX Fiber – 100Gb

100Gb Data Out

Snapshot of fabricated Pulsar die

Low speed PDs
For control system

4-ch Optical mux

Single-chip 40 Gb/s transceiver

High speed PDs

Holographic lenses

Optical demuxes

WDM mux/demux

- IL = 1.5dB
- Crosstalk ~20dB
- Bias and Control algorithm implemented off-chip

Can we do a 10Tb transceiver in a 1cm die? (That's 1000 10Gb TRXs, each 316x316µm!)

Total Area (mm²): 0.1000

Modulator 0.0036 (3.6%)

Demux: 0.0009 (1%)

Mux: 0.0009 (1%)

Detector: 0.0001 (.1%)

Optical Routing: 0.0050 (5%)

Area remaining for 0.0886 (89%)

transceiver electronics

Luxtera has demonstrated the optics for a 10Tb transceiver in a 1cm² die

Conclusion: CMOS Photonics Chips Are Working

Aurora

Two independent
10Gb transceivers
on a single die
(contains
complete PHY
circuitry)

Pulsar

A single 40Gb WDM transceiver 4λ x 10Gb (PMD circuits only)

Conclusions

- DARPA EPIC Program has already been a success -- Silicon Photonics
 Technology is working currently sampling to customers
- Technology offers the performance of optics, at the price of copper
- There are many technical advantages for silicon photonics to achieve low cost
 - CMOS Manufacturing
 - Wafer scale testability of optics and electronics
 - Built-In Self Test
 - Simplified packaging approach
 - Many channels can be put in a single package
- Longwave (1300-1600nm), single-mode fiber will become the lowest cost alternative